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An alternative development of the recursive-renormalization-group (RNG) theory for the subgrid
modeling of turbulence is presented which is now independent of the order in which the subgrid averag-
ing is performed. The relevant approximations, perturbation ordering, and the averaging process are ex-
plicitly considered. In particular, it is shown that, of the higher-order nonlinearities introduced into the
RNG Navier-Stokes equation, only the third-order nonlinearity appears at the desired level of the per-
turbation expansion. Moreover, these triple-velocity product terms appear at the same order as that of
the eddy viscosity which is generated by the RNG subgrid-elimination procedure. These third-order
nonlinearities also play a major role in the energy-balance equation with the corresponding energy-
transfer process resulting in an analytic eddy-viscosity formulation which is in agreement with that from
closure theories and the results of direct numerical simulations (DNS). This is also confirmed further
here by a direct analysis of both large-eddy-simulation and DNS databases for the fluid velocity. More-
over, it is shown that these RNG-induced triple nonlinearities give rise to a backscatter in the energy
from small scales to large spatial scales, in agreement with recent closure theories and numerical simula-
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I. INTRODUCTION

Renormalization-group (RNG) procedures, based on
the successive elimination of groups of statistically sym-
metric modes, were first introduced in the study of criti-
cal phenomena [1-3] and then to a variety of problems in
other areas of physics [3,4]. Invariably these procedures,
which reduce the number of relevant degrees of freedom,
introduce higher-order nonlinearities into the decimated
system. This is to be expected if the original system and
the reduced system are to give the same physics. Indeed,
in the application of RNG to the two-dimensional (2D)
Ising model Wilson [1] found that after the first decima-
tion the spin Hamiltonian no longer just involved the
nearest-neighbor interaction but also a diagonal nearest
neighbor as well as a four-spin interaction. Since the Is-
ing model is in thermal equilibrium, it was possible to
prove that the strength of these higher-level interactions
is successively weaker. Wilson [1] then dropped the
four-spin interaction, but retained the RNG-induced
diagonal-nearest-neighbor interaction. Excellent agree-
ment with the exact solution of the 2D Ising model was
then achieved only if this RNG-induced interaction was
retained.

In the application of RNG to fluid turbulence, one is
now faced with a system far away from equilibrium. In
the e-RNG work of Forster, Nelson, and Stephen [5],
Fournier and Frisch [6], and Yakhot and Orszag [7] it is
customary to introduce a white-noise, zero-mean forcing
term into the Navier-Stokes momentum equation. This
forcing term is determined by its correlation function. A
small parameter € is then introduced into the exponent of
this correlation function and exploited in the subsequent
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perturbation expansion.- Provided € <<1, it [7] has been
shown that all the higher-order nonlinearities introduced
by the RNG procedure are irrelevant interactions and
can be ignored. However, to recover the Kolmogorov
inertial range spectrum one is forced into the limit e—4.
Unfortunately, in this limit of e—4 it can no longer be
deduced that the RNG-induced higher-order nonlineari-
ties are ignorable. This is an acknowledged [7] drawback
of the e-RNG theories. Kraichnan [8] has concluded
that without higher-order nonlinearities the € RNG im-
plies a distant-interaction approximation.

Independently, we have applied a recursive-RNG pro-
cedure (originally introduced by Rose [9] to the linear
problem of turbulent advection of a passive scalar) to
both free-decaying [10] and forced [11] Navier-Stokes
turbulence. Again, higher-order nonlinearities are intro-
duced into the renormalized momentum equation. Based
on the observation that these higher-order interactions
are not only a natural by-product [1,2] of RNG in equi-
librium problems but are, in fact, essential in obtaining a
correct theory, we [10—12] kept only the third-order non-
linearities and examined their effect on the renormalized
eddy viscosity in the momentum equation. In these ear-
lier calculations, higher-order nonlinearities were
dropped without justification. Here, we shall argue that
this was a correct procedure by showing that the fourth-
order nonlinearities are higher order in the RNG pertur-
bation expansion than the third-order nonlinearities.
Hence one is justified in dropping these fourth-order non-
linearities from the renormalized momentum equation
[just as one is justified in dropping [1,2] the quartic cou-
pling from the 2D RNG-Ising model]. On the other
hand, we shall show in Sec. II and Appendix A that the

2503



2504

third-order nonlinearities occur at the same level in the
perturbation expansion as the eddy viscosity generated by
the RNG procedure. This again stresses the importance
of retaining the leading-order RN G-induced interactions.

Subgrid-scale modeling is necessary in the numerical
studies of turbulence because the required spatial and
temporal resolution in computer simulation is unattain-
able [13]. Since all necessary small (subgrid) scales can-
not be resolved numerically, one must resort to some
analytical modeling (subgrid modeling) in order to calcu-
late their effects on the numerically resolvable (supergrid)
large scales (large-eddy simulations) [14]. Classically, ad
hoc subgrid models have been used based on phenomeno-
logical closure arguments [14-16] and adjustable numeri-
cal factors [17], with some care needed to avoid internal
inconsistencies [18]. An important goal of the RNG ap-
proach is to provide a systematic subgrid-scale-
elimination scheme.

The essence of recursive RNG is to separate the tur-
bulent field into two mutually exclusive equations for
each wave-number band that is to be decimated: one
equation describes the evolution of the subgrid rapidly
evolving scales while the other equation describes the
evolution on the resolvable slowly evolving scales. The
subgrid scales are eliminated by appropriately solving the
corresponding dynamical equation, and then substituting
this result into the evolution equation for the resolvable
scales. An ensemble average is then performed over the
subgrid scales. As a result, new triple nonlinearity and
nonlocal eddy-damping functions are generated in the
averaged supergrid equation. This procedure is then re-
peated until the last subgrid shell is removed. Unlike e-
RNG theories [6,7], rescaling transformations—which
are the backbone of usual RNG [1-4]—are necessary.

In the systematic elimination of the subgrid shells in the.

recursive RNG, one can resort to an effective Reynolds
number and this point is discussed in some detail by Rose
[9].

However, an important question that has not yet been
clarified is the order in which the ensemble average is to
be performed. In earlier calculations [9-11], it was
necessary to perform the ensemble average after the
subgrid-scale solution is substituted into the dynamical
equation for the resolvable scales. Otherwise, the interac-
tion between the subgrid and resolvable scales would be
eliminated—and this interaction is crucial in generating
the triple nonlinearities. On physical grounds, however,
it is to be expected that the final physics should not be
dependent on whether ensemble averaging is performed
before or after the subgrid-scale substitution. Here this
question is reexamined by considering the relevant ap-
proximations and perturbation ordering made in both
free-decaying and forced Navier-Stokes turbulence. We
then present, in Sec. II, a new formulation of recursive
RNG that is independent of the order in which the en-
semble average is performed.

Although the recursive RNG has been considered [19]
a natural analytic representation for large-eddy simula-
tion (LES), one must demonstrate that this technique will
provide as accurate a solution as that obtained from stan-
dard closure theories [20—22] at large Reynolds numbers
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and direct numerical simulation (DNS) based on mea-
surements [23-26] at lower Reynolds numbers. In par-
ticular, the closure theories [20-22] were the first to
demonstrate that the eddy viscosity should exhibit the
following wave-number characteristics: (i) as k—0, it
should asymptotically approach a constant, while (ii) as
k—k,, it should exhibit a strong cusp. Here k, is the
boundary between the resolvable and subgrid wave num-
bers. These predictions were supported by subsequent
DNS measurements [23-26]. Current RNG theories
[5—12] do not reproduce both of these characteristics. In
particular, in € RNG [5-7] there is no wave-number
structure in the eddy viscosity since these calculations are
restricted to the imposition of the limit k—0. On the
other hand, recursive RNG [10,11] does yield a wave-
number-dependent eddy-viscosity structure. It does
asymptotically approach a constant as kK —0, but the re-
normalized eddy viscosity in the momentum equation ex-
hibits only a mild cusp as k—k,, in qualitative agree-
ment with the closure theories [20—22] and DNS mea-
surements [23-26]. Moreover, it was shown that this
cusp behavior was due to the presence of the triple non-
linearities induced by the recursive RNG in both free-
decaying [10] and forced [11] Navier-Stokes turbulence.
However, a major discrepancy between recursive RNG
[10,11] and closure theories [20-22] was in the strength
of the eddy-viscosity cusp as k —k,.

In Sec. III we resolve this discrepancy by examining
the RNG energy-transfer equation. In particular, it is
shown how the triple nonlinearities in the renormalized
momentum equation contribute to the full eddy viscosity
in the energy-transfer equation. An analytic expression
for this triple nonlinearity-induced drain-eddy viscosity
vr is obtained which exhibits not only a strong cusp be-
havior at k., in good agreement with standard closure
theories [20—-22], but also becomes negative for small k.
This small-k behavior of v; indicates that there is a back-
scatter of energy from small scales to large spatial scales,
as has been seen in recent numerical results [23,25,26].
This may indicate that the renormalized Navier-Stokes
equation may be a better LES model than those models
based on subgrid-scale closure theories [20—22] since it is
formulated directly on the momentum equation. In this
way, one will avoid the difficult task of relating a con-
sistent subgrid model (with subgrid drain and backscatter
[20,21,27]) from the energy equation back to the momen-
tum equation [27]. It should be noted, moreover, that
this identification has only been achieved for a model
problem [25,26]—and not for the Navier-Stokes problem
itself.

In Sec. IV we investigate LES and DNS databases for
the fluid velocity to study directly the effects of local in-
teractions on the energy-transfer equation—in particular
the effects of the coupling of resolvable and subgrid scales
on the eddy viscosity. It is precisely these terms which
are handled effectively in recursive RNG but completely
neglected in € RNG.

In Sec. V we summarize the main results of this paper
while some supplementary material is presented in the
Appendixes.
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II. REFORMULATION
OF THE RECURSIVE-RNG PROCEDURE

The evolution of the velocity field in incompressible
turbulence is given by the Navier-Stokes equation, in
Fourier representation,

—a~+vok2

= u (k,0)=f (k1)

+M g, (k) [df ugj,0)
Xu,(k—j,t), (1)
with
ko, (k,1)=0 . 2)

vy is the molecular viscosity, f, is the forcing term (with
fo=0 in free-decaying turbulence), and summation con-
vention on repeated subscripts is understood. The non-
linear coupling coefficient

M 5, (k)=k, D g(k)+kgD,, (k) , (3)
where D . is the projection operator
kokg
Da/g(k)zsaﬂ_ k2 (4)

In recursive RNG, the subgrid wave-number region
k. <k <k, is partitioned into N shells, each with thick-
ness h,0<h <1:

k.=ky=hVkg< -+ <k;=h'ky< -+ <k,=hky<kg ,

(5)

where k, is typically chosen to be on the order of the
Kolmogorov dissipation wave number [28] and k, is at
the boundary between the subgrid and resolvable scales.
It is convenient to introduce the superscript notation >
for subgrid quantities and < for resolvable scale quanti-
ties. Thus, in the first subgrid shell &, <k <k, the evo-
lution of the subgrid field is given by

%-f—vokz u;(k,t)=f;(k,t)+AMaﬁy(k)fd3j[u,3<(j,t)u,f(k—j,t)+2u§(j,t)u;(k—j,t)—%u,,?(j,t)u;(k—j,t)] R
(6)
while for the resolvable scales, k <k,
%+vok2 u;(k,t)Zf;(k,t)+7»MaBy(k)fd3j[u§(j,t)u;(k—j,t)+2uﬁ>(j,t)u;(k—j,t)+u,3>(j,t)u;(k—j,t)] .
(7)

The parameter A is introduced to organize the perturbation expansion, and as in all RNG theories, A will eventually be
set to unity. One should note that because of the different k regions in Egs. (6) and (7), the corresponding f d3j are

different.

A formal solution to Eq. (6) can be obtained by introducing the Green’s function [11] for the first subgrid shell

Golk,t,7)=exp[ —vok Xt —7)]

so that

u; (k)= [d7Golk,t,7) 1 f 2 (K, 7)+AM o, (k) [ d%jlu s (Grou s (k—j, ) +2u g (Grdu 5 (k—j,7)

A. Forced turbulence

For forced turbulence, the subgrid velocity field is ex-
panded in terms of A,

ur (k,)=u %k, ) +Au’ (k,2)+ - - (10)

so that from Egs. (8) and (9), the leading-order subgrid
field

(8)
+ug Goru (k—jm] | . 9
ulk,0)= [drGolk,t,7)f; (k,7) . (1

The random force is specified by its ensemble average
properties

(f2D)=f5 (k1)

with

(f>(k,1))=0, (12)



2506 YE ZHOU AND GEORGE VAHALA 47

(fa (k,t)f 5 (K',t"))=DyD g(k)k ’8(k+k')8(z —1t') .
(13)

D, defines the intensity of the forcing term. In 3D, the
choice of forcing exponent y =3 will recover the Kolmo-
gorov energy spectrum [7,11,29] while the choice y = —2
corresponds to thermal equilibrium [5,13].

From Egs. (11) and (12),

(ujo(k,t)>=0, (u;(k,t)>=u§(k,t) , (14)
and

Cug %k, Du g (k1)) =Cu;°(k,0))uj (kK',t')=0 (15)

ug ' (k,0)=M,p,

since the leading-order subgrid and resolvable scale ve-
locity fields are statistically independent.

The subgrid autocorrelation for homogeneous tur-
bulence takes the form [30]

(ug%(k,0uz (k1)) =Q,p5k,1,t")8(k+k') , (16)

where Q5 are the corresponding spectra, given explicitly
by Egs. (11) and (13). For isotropic stationary turbulence
0 s simplifies to

Qup(k, 1,6 ) =D 5(K)Q (K|, —1') . (17)

The subgrid velocity field at order O (A), from Egs. (9)
and (10), satisfies

() [ a3 dr Golk,t,m)[u s Gyorouss (k—j,1) +2u 7 0Gyru s (k—j, ) +u 0, u 0 (k—jm)] . (18)

B. Free-decaying turbulence

In Free-decaying turbulence, the subgrid velocity is now given by

d
[E +v0k2

u (k) =AM o5, (k) [ dPjuj (G,0u (k—j,1)

=AM 5, (k) [ d2j[2u7 Goou S (k=§,0+ug G (k=501 . (19)

It is no longer appropriate to expand u ~ in powers of A
as in the forced-turbulence case, Eq. (10). Instead, we
subdivide the dynamics into a subgrid scale part that con-
tains the ‘‘subgrid-subgrid,” ‘“‘subgrid-resolvable,” and
“resolvable-resolvable” couplings. When the small-scale
fields are broadband, one treats the ‘“‘subgrid-subgrid”
coupling as turbulent. The “subgrid-subgrid” coupling is
principally local in wave-number space while the other
couplings are nonlocal in wave-number space [31,32].
With this in mind, we decompose the subgrid field u ~
into

ul (k,t)=ub(k,t)+u;c(k,t), (20)
where u~% corresponds to the base subgrid-scale tur-
bulence which is described by Eq. (19) with the right-
hand side set to zero. u ~ ¢ is the effect of the large-scale
field on the base subgrid turbulence [33].

The formal solution to the base subgrid field u > ? is

uZb,0=n [ d%j dr Golk,t,T)M o, (k)
Xu,,?b(j,’r)u;b(k-—j,'r) . (21)

Since the base turbulence can be assumed to be statisti-
cally isotropic and homogeneous [33]

Cug®(G,mu ;P (k—j,7)) =Dy, (HQ(Ijl,t —1")8(k)
=0, (22)
for k in the subgrid region, i.e., |k| >0, so that the 8(k)

f

factor is zero. Technically speaking, Eq. (22) shows that
the average interaction between the two base subgrid
fields at the same vertex is zero. Thus, on averaging Eq.
(21),

(u2®k,1))=0. 23)

The corresponding equation for the correction to the
base subgrid velocity field is approximately given by

ug (k)= [ dj dr Golk,t,7)M o, (k)

Xlug (§,muy (k—j,7)
+2uz(yruy (k—j,7)] . (24)

u > % is introduced into the right-hand side of Eq. (24) to
indicate that these are the major contribution to the
subgrid-resolvable interaction [33]. This can also be
viewed as an assumption on restricting ourselves to weak
(to lowest-order) inhomogeneous turbulence in the dy-
namic equation for the subgrid field. This is to be dis-
tinguished from the case of forced turbulence where the
leading-order term in the subgrid field is given explicitly
by Eq. (11). In addition, the free-decaying subgrid auto-
correlation is assumed to follow the inertial range
power-law structure since Q (|k|) is related to the energy
spectrum [30]

E(k,t —1t')

5 (25)
47k

o(k|,t—t)=
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For forced turbulence, the subgrid autocorrelation is
determined from the forcing correlation function [11].

C. Averaging process

If we perform ensemble averaging in the case of forced
turbulence, then from Egs. (13) and (15),

(uZ'k,0) =M, (k) [ d’jd7 Golk,t,7)

Xu,jf(j,'r)u;(k—j,f) . (26)
The last term in Eq. (18) vanishes since the interaction
between the two leading-order subgrid fields through the
same vertex—i.e., the average of this term will lead to a
6(k) term [similar to that arising in the free-decaying tur-
bulence case, Eq. (22)]. This term cannot contribute since
k >k;. We now see one of the advantages of the present
formulation over our earlier treatment [11]: a closure ap-

proximation need not be invoked to remove the triple

Cug (G, 0u ;% (k—j,0)) =Mpgg . (

+ Mg, (§) [d3'd T Golj, 1, u 30

')deJ'dTGO(j,t,T)u;(j',r)u
+2Mpgg,(j) fd j'dTGy(j,t,7) (u
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. Thus, for forced turbulence,
D=Alu>' )Y+,
#0 27)

subgrid term u " u ~u

(ug Y=([u A+ -

where (u > !) is determined from Eq. (26).
To complete the analysis, one can calculate the subgrid
autocorrelation

(ug (G,ouy (k—j,0))=Cug J,t)u>°(k i)
+2ACug ' (j,0)u (k—j,t))
(28)
to O(A). Again, the first term in Eq. (28) is zero since it

will provide a 8(k) term and M4, (k)8(k)=0. The
leading-order subgrid correlation is thus O(A) and is
readily derived from Eq. (18) by multiplying it by u>°
and performing the subgrid average:

SG=imu ) %k —j,0)

0", 7)u O(k“*j,t))u;'(j‘“j',T)

uy O (k—j,)uC(i—j,1) .

The first term is zero since {(u”°)=0, while the third term is higher order in A because of the triple subgrid term

u > % >% >% Hence, to O (1),

<u , >0(k_j,t)>:2MBﬁ'y'(

N[ d%drGol,muzOG, P

O(k—j,t)Yu s (j—j,7) . (29)

Similarly, for free-decaying turbulence, the subgrid ensemble average on Eq. (20) yields, at O (1),

(ug (k) =Cub(k,t)) +{u (k1))

(k) [ d%j d7 Golk,t,Tu 5 (j,mu 5 (k—j,7) .

(30)

Again, this should be contrasted with the usual assumption [10] (1~ )=0. The subgrid autocorrelation for free decay

(k—j,0))=(ug ) +2¢u;

= ZAMBB,

(ug (j,0u; Ju ;b (k—j,¢

where again the first term will not contribute since
M 5,(k)8(k)=0 (i.e., the interaction between two base
velocity fields at the same vertex does not contribute).
We have also dropped all nonlinear terms involving u ~ ¢
It should be noted that one can readily write down a
unified framework with which to handle either forced or
free-decay turbulence. Such a unified framework [12] has
been found to be useful in examining the effects of helici-
ty on subgrid-scale closure [34].

Equations (26) and (30) can be considered as self-
consistency constraints on the present closure scheme. It
is precisely these constraints that will allow us to first
perform the ensemble averaging over the subgrid scales in
the dynamical equation for the resolvable scales—a pro-
cedure that was not permitted in earlier RNG formula-
tions [10,11].

fd j'dT Golk,t,7)ug

J0u ;P (k—j,1))

2§ mu ) k=g, ) u s (=T, (31)

D. Resolvable scale momentum equation

We now present an alternative recursive RNG in
which ensemble averaging over the subgrid scales is per-
formed first—a method that in the dynamo literature
[35] is known as multiple scale smoothing. As in our ear-
lier multiple scale smoothing. As in our earlier multiple
scale elimination technique [10,11]—in which the
subgrid-scale averaging must be performed as the last
operation—we work to O (A?). This treatment applies to
either free-decaying (with f,=0) or forced turbulence.

The resolvable scale fields satisfy the subgrid-averaged
Eq. (7):
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U (K O=f5 (K0 +AM o (k) [[d3jlu 5 Gooou S (k—§,00+2Cu g (G,0)u 5 (k,j,0)

+ug (G,0u; (k—j,0)], (32)

where the subgrid-averaged terms are given by Egs. (26)

Navier-Stokes equation for the resolvable scales is

)
5;+v0k2

ugk, 0+ [ drnglk,t,u (k,7)

= f ok, 1)+ AM 45, (k)

For notational simplicity, the superscript < is dropped
since all the velocity fields are in the resolvable wave-
number region, and the eddy damping function 17, is
given by

Nolk,t,7)= —4M o5, (K) [ d®j dT Mg, (j)Golj,1,7)
XD, (k)U(k—jlt —7)
XDg, (k= j) (34)
in which the leading-order subgrid autocorrelation
(ug (k,thug (k',t")) =D g(k)U(k|,t —t)8(k+k') .
(35)

d
§+V0k2

w0+ [ dr S k1, m)u,(k,7)
- m=0

—(31). Thus, after eliminating the first subgrid shell, the

fd?j uﬁ(j,t)uy(k—j,t)+2kfd3j d*j'Mpg (NGolj,t,Pug(§',0u, (3= 5, Tu, (k—j,0) | .

(33)

[

For free-decay turbulence U is related to the energy spec-
trum [Eqgs. (22) and (25)], while for forced turbulence U is
given through the correlation function [Eqgs. (16) and
(17n)].

One now proceeds to eliminate the next subgrid shell.
For the quadratic nonlinearity in Eq. (33) one proceeds as
in the first iteration. However, since the triplet non-
linearity in Eq. (33) is already O(A?) there will be no
difference in the way this term is handled —either by the
traditional multiple scale elimination procedure [10,11]
or by the present multiple scale smoothing procedure.
One readily finds form invariance after the second itera-
tion, so that at the (n +1)th iteration the resolvable scale
momentum equation takes the form

=foak)FAM g5, (k) [ d%) \ug(G,0u, (k—j,0+2A [d7d*i'Mpg, (/) S G, (jot,Pup(i,7)
m=0

with the Green’s function G,, satisfying

d
€;+V0k2

Gnlkt,r)+ [ ds G, (k,s,7)
XN, —1(k,s,7)=8(t —71). (37)

The eddy-damping function 7,, consists of contributions
from both the quadratic and triplet nonlinearities:

N (ks t, TV =02 (k,t, 1)+ 9L (k,t,7) (38)

Xu (=, u, (k—j,0) | (36)

where

N2 (k,t,7)=—4M 45, (k) [ d*j dT Mgz, ()G, (js1,7)

aBy
XD, (K)U(k—jl,t =7)

XD g, (j —J) (39)

and the triplet interactions yield
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0l (kt,7)=—4M o5, (k) [ d’j dT Mgz,
m—1

X 3 Gpljst, 7D o (k)

m'=0
XU(k—jl,t —7)
XDg, (k—j) . (40)

Equations (36)—(40) are the required RNG momentum
equations for the resolvable scales. These equations are
identical to those derived earlier for forced turbulence us-
ing the standard multiple scale elimination approach [11]
but are a generalization of our Markovian free-decaying
turbulence theory [10] due to the presence of the nonlocal
behavior of the eddy-damping function. In Appendix A
we shall show that this non-Markovian forced and free-
decay result can also be obtained from the multiple scale
elimination approach. Thus we have now provided a for-
malism that is not only independent of the order in which
the subgrid average is performed but which shows that
the quartic resolvable scale interactions u “u “u “u < will
not appear to O(A?) in the recursive-RNG momentum
equation. In earlier formulations [10,11] these fourth-
order nonlinearities were simply dropped without proper
justification.

3
~ HvHkk?
37 v*(k)

+2M 5, (k)3 [d3jdjh 4

on setting A=1. O <h <1 is the scaling factor [9-11]
that measures the coarseness of the subgrid partition.
The direct numerical simulation of Eq. (41) is difficult
and has not been attempted.

Now closure theories [20—-22,26,27] are concerned with
the total energy transfer that arises from the terms on the
right-hand side of Eq. (7). As a result, these theories can-
not identify the individual interactions that contribute to
the energy transfer. However, recent advances in large-
scale computations have allowed some identification.

We perform a somewhat indirect test on the role of the
triple nonlinear terms in Sec. IV by analyzing high-
resolution decaying [36] and forced [25,26] databases on a
128 X128 X 128 mesh. We shall show, in Sec. IV, that the
u”u” term on the right-hand side in Eq. (7) represents
energy transfer consistent with subgrid eddy damping.
Near the cutoff region k_, the energy transfer arises from
the energy-conserving u “u < term in Eq. (7). The cross
u”u < term in Eq. (7) will be shown to play a key role in
the removal of energy locally from k_, as well as contrib-
uting to the strong cusp behavior of the eddy viscosity
around k.. One can then see the importance of the triple
nonlinearities in the recursive-RNG approach—these cu-
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III. EFFECTS
OF THE TRIPLE NONLINEARITIES
IN THE RENORMALIZED NAVIER-STOKES
EQUATION ON THE EDDY VISCOSITY

A. Introduction

We now turn to the important question: what are the
effects of these triple-order nonlinearities on the eddy
viscosity? In free-decay turbulence, we presented only a
qualitative argument [10] that these triple nonlinearities
will contribute an extra damping effect in the momentum
equation near k.. In the case of forced turbulence, we
simplified [11] the RNG momentum equation by taking
advantage of the fact that the subgrid modes evolve on a
faster time scale than the resolvable scales. To leading
order one then loses the nonlocal behavior of the eddy-
damping function, but the resulting integro-difference
eddy-viscosity recursion relation is more tractable and
leads to a fixed point, v*(k). Thus, in either free or
forced turbulence, the RNG Navier-Stokes equation can
be simplified to

U (K, )= 1 (K, 1)+ M o, (k) [ d%f w00, (k—j, 1)

Mg, (j) .., . .
Wug(]—],l)uyr(J,t)uy(k_J,l) (41)

bic interactions arising from the u ~u < term in Eq. (7)
and which are absent from € RNG.

B. Eddy-viscosity cusp behavior
from energy transfer in LES [21]

In this section we shall briefly review the LES calcula-
tion of Leslie and Quarini [21] and their simulations
which show that in the energy-transfer equation the eddy
viscosity exhibits a strong cusp behavior as k —k,. This
will be contrasted, in the following section, to what the
recursive-RNG theory—with its triple nonlinearity —
predicts for the eddy-viscosity behavior in the energy-
transfer equation.

In the LES approach to turbulence, a filter function
[14,18,21,37] F is introduced to smooth the turbulent
fields (which contains information on all scales up to the
dissipation wave number k)

U (X, ) =T (X, 1) FuLy(x,t), (42)

where the mean (filtered) part of u, is defined by
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T (x,0)= [ d*x'F(x—x',a)u 4(x',1) (43)

and u, is the fluctuation. The filter function F, with
characteristic length a, satisfies
fd3x'F(x—x',a)=1 R

a

with lim [ dx'F(x—x',a)u,(x)=u,(x) . @4)

A standard filter function used in LES is the spherically

symmetric sharp cutoff special filter, which in wave-
number representation is

1 for k <k,

Fka)=1g for k >k, .

(45)

On filtering the Navier-Stokes equation, one en-
counters a closure problem in_having to determine a
closed expression for the tensor u ,ug. Using Eq. (42),

uauﬁa:ﬁu?%-LaB-l—QaB , (46)

where L,z is the Leonard stress

Lyp=iu ug—i ug 47

and Qg is the true subgrid stress

Qup=uyupgtiuptuup . (48)

The major issue in the filtering approach to LES is how
to model the true subgrid stress Q.; in terms of the
filtered velocity and its derivatives. In the classical clo-
sure schemes, one typically works with the second-
moment equations rather than the filtered Navier-Stokes
equation. In particular, with random forcing, Leslie and
Quarini [21] have derived the filtered energy transport
equation

a

E+vok2 E(k,t)=TP(k,t)+ TS(k,t)+R , (49)

where the filtered energy E (k,t) is defined by
E(k,n=1k*[d0la gk, (—k,0) . (50)

The ensemble averaging { ) is introduced because of the
random forcing, and 4} is the angular k integration. R
is the energy transfer due to the random forcing and TP
is the standard inertial transfer energy. T is the energy
transfer due to the subgrid stresses and is the term of im-
mediate interest. Using classical closures, Leslie and
Quarini [21] show that the subgrid stress energy transfer

TS(k,t)=2k*v (k)E(k)—®(k,1) , (51)
where v, (k) is the drain part of the eddy viscosity
vy(k)=3 A(k,p,q)[1—F(p)F(q)]E (q) (52)
P

and
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®(k)=T B (k,p,q)FXKk)1—F(p)F(¢)]E(q)E(p) . (53)
p.q

F is the filter function and the total scalar energy E (k) is
related to the filtered energy

E(k)=Fk)E (k) . (54)

The explicit [21] functional forms of 4 and B are not
needed here.

If one invokes the standard eddy-viscosity assumption
then the subgrid stress energy transfer can be defined

TS(k)=2k?v,(k)E (k) , (55)

where the classical closure eddy viscosity v, (k) is defined
by

vlk)=v (k)—v, (k) . (56)
The backscatter eddy viscosity v, (k) is defined by
D(k)
(k)=————. (57)
Ve T ORE (k)

From the numerical work of Leslie and Quarini [21]
for the sharp-cutoff filter, one finds that

v (k)=wv,(k) for k <<k, (58)

since for small k, the backscatter eddy viscosity v, (k)=0.
As k —k_, v;(k) increases rapidly so that there will be an
approximate cancellation between v,(k) and v, (k). The
net effect on the classical closure eddy viscosity is that
v.(k), Eq. (56), exhibits a strong cusp behavior as k —k,.
This cusplike behavior has also been found in the test
field model of Kraichnan [20], in the eddy-damped quasi-
normal Markovian (EDQNM) theory of Chollet and
Lesieur [22], in the direct numerical simulations of
Domaradzski et al. [23], as well as in the recent LES
work of Lesieur and Rogallo [24] on passive scalar tur-
bulence.

If the Kolmogorov inertial energy range is assumed to
extend to kK —0, then v,(k) exhibits an integrable singu-
larity [20,21] as k—k,. If one assumes a production-
type spectrum [21] (which is zero at k =0, peaks at wave
number k_,., and joins onto the Kolmogorov spectrum
for k>k_,,) then this singularity is removed. In this
case, v (k) still exhibits a marked cusplike behavior as
k — k., even when the production energy spectrum peaks
at k.. /k.=0.1.

C. Eddy-viscosity cusp behavior
from energy transfer in recursive RNG

Consider the RNG momentum equation (41). This
equation can be simplified by passing to the differential
partition limit [9] A — 1, in which
4/3
PRI

kLh"_A, V¥ (hj)—>v*(k,), (59)

c

g
k

c

In this limit, Eq. (41) reduces to
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%+V*(k)kz U g (K, )= f (K, 1)+ M o, (K) [ d%j up(j, 00, (k—3j,1)
4/3 .
3 | Mpg, () ., .
+2Ma37(k)fd3]d3]' _kl_] Vm*fiy)jz ugli—i0u, (i, t)u, (k—j,t), (60)

where v*(k) is the appropriate RNG eddy viscosity
[10,11] and is discussed in some detail in Appendix C.
The various wave-number ranges for the last term of Eq.
(60) are

k| <k., |j'l<k., lj—jl<k.,

(61)
k. <l|jl<k+k, .

1. Transport equation

The second-moment equations can be readily derived
from Eq. (60) by determining the time evolution of

Uupk,0)=Cu (k0 ug(—k, 1)), (62)
J
Mg, ) [ |*7°
TI=4M z, (k) [ %) a’jr =21 | L
B By f J J v*(kc)j?. kc

[

i.e.,
aU 4(k,t)

o7 ==2v*(Kk?Up(k,1)+2( f o(k, 1 Jug(—k,1))

+ T2k, 1)+ Tl(k,1) (63)

where TP is the usual energy-transfer term due to the
quadratic nonlinearity in Eq. (60),

T2=2M 5, (k) [ d%jug(j,0u, (k—j,0ug(—k,0) ,
(64)

while T7 is the energy transfer arising from the triple
nonlinearity induced by RNG,

Cuyp(G—§0u, (3, 0u, (k—j,Dug(—k,0) . (65)

Thus 77 is a term arising in Eq. (63) which is not present in the LES theory of Leslie and Quarini [21] or the e-RNG

theory of Dannevik, Yakhot, and Orzsag [38].

To leading order, T7 can be simplified by applying the quasinormal approximation to the fourth-order moment in Eq.

(69),
Cug(G=§,0u,G,0u, (k—j,ug(—k, 1))

~Up(§= W, p(k—)8(1)+ Up, (i— i), 5518k — ')+ Uppli— iU, ()8(k+j'—j) . (66)

This is a standard approximation and has been employed
successfully in a variety of physical problems [39-41],
and in particular in the context of ¢ RNG [38]. It is
justified here because it is made in expressions that are
dependent on the eddy viscosity [and not the molecular
viscosity, see Eq. (67)]. Another justification is that to
leading order u~° has Gaussian properties [see Egs.
(11)=(13) and the expected asymptotic unimportance of
any non-Gaussian components in the forcing statistics
[38]]. The first term in Eq. (66) cannot contribute to T'T
due to the 8(j) factor and the fact that the [d°; integra-
tion has |j| restricted to the shell k, <j <k +k,. Hence,
on substituting Eq. (66) into (65), one obtains

Mg,..() [ j ¥
TT.=8M , (k) [a%j—Lr | L
af aB"}/( )f ]V*(kc)j2 kc
XU, (i—k)U,4(K) . (67)

The energy spectrum E(Kk,?) is related to the correlation
function U,

E(k,1)=27k’D ,5(k)U ,5(k,1) , (68)

where D ,; is the projection operator, Eq. (4), so that its
time evolution is

E(k,t)

4rk?
=T2 +TT +{f(k,hu,(—k,t)) . (69)

li+2v*(k)k2
at

For forced turbulence, the covariance [see Eq. (13)]

U plk) = 2P0 -, (70)
o 2v*(k)k>
will recover the Kolmogorov energy spectrum k ~>/3 for

the exponent y =3. Following Leslie and Quarini [21],
we can define a drain-eddy viscosity v, associated with
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this triple nonlinearity energy transfer T'7,

E (k)
TI =—2v (k)k? , (71)
YT 4k?
so that
1 1
(K)y=——7 5
YT i kKA k2
Kk, 1 LyDolk—j|77 7247
j 7
kac d]f—1d'u v(|k—jl) 72
where k-j=kju, and L;; is given by
(12 24 52\ s 2
Lk.:—k](l p)pulk*+j2) —kj(1+2u7)] C(73)

! k*+j*—2kju
The eddy viscosity v*(k,), appearing in the denominator
of Eq. (72), is the renormalized viscosity of the recursive-
RNG Navier-Stokes equation [10,11] so that v, reduces
to

1 1
vp(k)= ———— —
T 2 (kK23 k2
k+k, | L,.j*?
X dj | d L .
ke Jf—l H0.1904c1 2K 2 [k —j| 1173

(74)

From recursive-RNG calculations [11] it is shown in Ap-
pendix C that v*(k,.)=0.329, while the renormalized
eddy viscosity v(|k—j|) in the integrand of Eq. (2) takes
the form [11,42]

v(|k—j|)=0.1904K 33k ~4/3 . (75)

K, is the Kolmogorov constant and € is the total rate of
dissipation of energy in the subgrid scales.

From Eq. (74), one can readily show that the drain-
eddy viscosity vp(k)<O for k/k.<<1. Indeed, since
|k —j| lies in the resolvable scale, |k —j| <k,. Thus, for
k <<k,, the effect of the restrictions on the j integration

kp<j<k.,+kup and k <j<k +k
results in the integration domain
0=u=1, k.<j<k ‘ku.

Using Eq. (73) and some straightforward expansions, we
find for k <<k,

1 1

k)= —
vl kAR &

| k,+kp L, j*"3
Xf d,ufk 1/3j 2 1173
0 0.1904¢' 3K 2 |k — j

1 1
T 2.856e' K2 v (kK

dj

c
c

+0

k

The fact that the drain-eddy viscosity associated with the
RNG-induced triple nonlinearities is negative for k <<k,
implies that there is a backscatter of energy from the
small scale to the large spatial scales. This backscatter
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effect has also been found in the recent numerical work of
Chasnov [25,26] as well as in the numerical work of
Domaradzski et al. [23].

2. Determination of the drain-eddy viscosity
associated with the triple nonlinearity

Consider a production-type energy spectrum [21] of
the form

E(k)=As |7 |Koe?k 37, (77)

p

where the function 4,(x) is

s+5/3

A (x)=—=

R —m for exponent s , (78)
X

K, is a constant which is directly correlated to the loca-

tion of the maximum in E (k). From Eq. (78) we find that

E(k)—k® as k—0 : (79)

so that from direct numerical simulation results [24-26]
an appropriate choice for the exponent s is

s=4. (80)

On the other hand, As(k/Kp )—1 for k >>Kp so that the
production-type spectrum, Eq. (77), joins smoothly onto
the standard Kolmogorov spectrum. In Fig. 1, the pro-
duction energy spectrum, Eqgs. (77) and (78), is plotted for
s =4 and for various values of K,. Note that as K, de-
creases, the peak in the energy spectrum moves to smaller
k.

For the case of forced turbulence we plot, in Fig. 2, the
drain-eddy viscosity v(k) associated with the triple non-
linearity transfer function T'7 for the production-type
spectrum E (k) for various values of the parameter

E(k)
10°

sl

gl

102

Lyl

|

104 e —————rr
0.1 1 10
k
FIG. 1. The production energy spectrum E(k), Egs.

(77)-(80), for various values of =k /K,. These E (k) curves
are normalized so that f dkE (k)=const, independent of .
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r=k./K,. Note the appearance of a strong cusp in the
drain-eddy viscosity vy(k) as k —k, for r > 1. Also plot-
ted in Fig. 2 is the renormalized eddy viscosity v*(k) that
arises in the renormalization of the Navier-Stokes equa-
tion and has been determined in earlier calculations [11].
v*(k) is insensitive to the value of the parameter r. As
expected from the small-k asymptotic result of Eq. (76),
the drain-eddy viscosity v;(k) <0 and over a consider-
able wave-number range: k/k, <0.45. As mentioned
earlier, this negative drain-eddy viscosity represents a
back transfer of energy from small scales to large spatial
scales and has also been seen in recent numerical simula-
tions [23,25,26].

In Fig. 3, for free-decaying turbulence [10], we plot the
analogous drain-eddy viscosities v (k) as well as the cor-
responding renormalized momentum eddy viscosity
v*(k). Again, v(k) <O for small k so that there is again
a backscatter of energy from small scales to large spatial
scales. A strong cusp feature is also present as k — k.

The net eddy viscosity

VoK) =v* (k) +v (k) (81)

is plotted in Figs. 4 and 5 for forced and free-decaying
turbulence, respectively. For r > 1, we again find a strong
cusp feature in the net eddy viscosity as k—k_.. This is
to be compared with the net eddy viscosity found from
the closure theories of Kraichnan [20], Leslie and Quarini
[21], and Chollet and Lesieur [22] which are also shown

16 T
v ()

12 T

- RNG momentum

0.4

1ot

0.01 0.1

FIG. 2. The drain-eddy viscosity v, (k) arising from the tri-
ple nonlinearities for the case of forced turbulence. r=k./K,.
Note that v(k) <0 for k /k, <0.45. This is indicative of back-
scatter of energy from the subgrid scales to the large scales and
this effect has been seen in direct numerical simulations
[23,25,26]. Note the sharp cusp behavior in vy(k) as k—k,.
For comparison, the renormalized v*(k) arising in the RNG
momentum equation is also plotted.

1 -
v.(K)

04 & RNG momentum

FIG. 3. The drain-eddy viscosity v,(k) arising from the tri-
ple nonlinearities for the case of free-decaying turbulence.
r=k./K,. Note that v7(k) <0 for k /k. <0.45 but this energy
backscatter is not as pronounced as in the case of forced tur-
bulence. Also the cusp behavior in v (k) as k —k, is somewhat
milder. For comparison, the (free-decay) renormalized v*(k)
arising in the RNG momentum equation is also plotted.

in Figs. 4 and 5. Note that for »=1, the inertial k ~>/3
Kolmogorov spectral form occurs only in the range
k /k.>1 (see Fig. 1) and so the case of » =1 does not cor-
respond directly with any numerical or LES simulation
results. This somewhat unphysical case is included to
show the effect of 7 on the strength of the cusp as k —k_.

2 -+
4 r=4 — 5o
Vet | /
1 ]
16 1 r=3 —le
] I
¢
! 4
12 +
T closure theories
0.8 +
04 +
e L Ny Ny r= 1
0 t J.
0.01 0.1 1
k/k
FIG. 4. A comparison of the net eddy viscosity

Voerlk)=v7(k)++v*(k) arising in the RNG energy transport
equation with that arising from closure theories for forced tur-
bulence. r =k./K,,.
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0 - t ]
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FIG. 5. A comparison of the net eddy viscosity

VoelK)=v7(k)+v*(k) arising in the RNG energy transport
equation with that arising from closure theories for free-
decaying turbulence. r =k /K,.

IV. SUBGRID EDDY VISCOSITY
FROM NUMERICAL SIMULATION DATABASES

In numerical simulations, energy transfer and eddy
viscosity are analyzed by introducing an artificial cut
k. <k,,, where k,, is the highest resolvable wave number
in the simulation. Thus the subgrid scales have
k. <k <k, while the resolvable modes have k <k,.
With this wave-number separation, it is possible to evalu-
ate explicitly the effect of the subgrid scales on the resolv-
able modes. It is convenient to rewrite the energy-
transfer equation for the resolvable scales, readily deriva-
tive from Eq. (7), in the form

i +2V0k2

Y E(k,t)=T <(k)+T” <(k)+T>(k), (82)

where k <k, and

T<(k)=Im | Mo, (k) [ d%ju $* (K)u s (,1)

Xu S (k—j,1) (83)

gives the rate of energy transfer to mode k from interac-
tions between the resolvable scales u /3< and u_ (we have
reverted back to the notation of u <~ for the resolvable
modes and u ~ for the subgrid modes),

T <(k)=Im | M, (k) [ d%j u $* (k)2u} (j,1)

Xu s (k—j,0) (84)
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is the energy-transfer rate to mode k from the interac-
tions between resolvable-subgrid modes u ~u <, and

T>(k)=Im [Ma,gym)fd%' wEtRug Goou (k—j,1)

(85)

is that transfer rate to mode k from the interactions be-
tween subgrid-subgrid modes u ~u ~. Since the effects of
subgrid modes are conventionally modeled by eddy
viscosities, we thus define

T><(k) - T>>(k)
> < = klk)=—"T5—"7"7,
V7 Wkl == ap iy v Kl 2k2E (k)
(86)
with the total spectral eddy viscosity being given by
Vel Kl )=v7 (klk ) +v> <(k|k,) . (87)

The eddy viscosities in Eq. (86) are determined directly
from numerical simulations by calculating the modal en-
ergy transfer from velocity field databases generated on
128 meshes for both forced and free-decaying Navier-
Stokes turbulence. The wave-number cutoff k. is chosen
at k,=32. The forced flow database was generated by
Chasnov [25] in a LES of the Kolmogorov inertial range
using a subgrid model derived from a stochastic equation
that is consistent with EDQNM theory. The free-decay
DNS database was generated by Lee [36] at a microscale
Reynolds number of about 50. Our analysis is performed
at one fixed time instant—so that, in essence, we are ex-
amining one member from an ensemble of realizations.

In the stimulated inertial range, the eddy viscosities are
plotted in Figs. 6 and 7 for forced and free-decaying tur-
bulence, respectively. For forced turbulence, the eddy
viscosity is positive for small k (Fig. 6), but for free-
decaying turbulence the eddy viscosity can become nega-
tive [23] for a substantial range of small k if the wave-
number cutoff k. lies in the far dissipation range [20]. If
k. is chosen closer to the energy containing range then
the wave-number region of negative eddy viscosity is re-
stricted to the smallest k’s (Fig. 7). The free-decay eddy
viscosity exhibits features similar to that found in the
forced-turbulence case as k — k..

Consider first v>7(k), which arises from the subgrid-
subgrid interactions. From Figs. 6 and 7 we see that
v>(k)—const for small k. This shows that the modeling
of these interactions results in an eddy viscosity in direct
analogy with the concept of molecular viscosity. Note
moreover that v>” (k) decreases as k —k,_ so that v> (k)
cannot give rise to the sharp cusp around k., as seen in
DNS and LES. It should also be remembered that if a
spectral gap approximation is made, then the only contri-
bution to v, (k) arises from v (k).

On the other hand, we find from the analysis of both
forced and free-decaying turbulence databases at a given
time instant, that the contribution of the resolvable-
subgrid interactions will give rise to v~ (k) which exhib-
its a sharp cusp as k—k.. Our recursive-RNG eddy
viscosity, Eq. (81) and Figs. 4 and 5, is in excellent agree-
ment with the results of these LES and DNS databases,
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FIG. 6. Forced-eddy viscosity contributions as determined
directly from LES databases for the fluid velocity at one time in-
stant. v, (k)=v>(k)+v> <(k), where v (k) arises from mea-
sured LES nonlocal subgrid energy transfer and v> <(k) arises
from measured LES local subgrid energy transfer. Note the
strong cusp arising from the local subgrid energy transfer as
k—k.. It should be noted that when one wishes to compare
LES results with EDQNM results one must scale the LES re-
sults by a factor of about 1.7 to account for subgrid-scale
transfers k. as a result of interactions across k,, (the interested
reader should consult Refs. [24—-26] for more details).

03 04 05 06

02
I

0.1
!

Q
Q

? T T LI S S B N | T T LN BN B Bt B

107 10

FIG. 7. Free-eddy viscosity contributions as determined
directly from DNS databases for the fluid velocity at one time
instant. v (k)=v>(k)+v” <(k), where v>>(k) arises from
measured DNS nonlocal subgrid energy transfer and v~ <(k)
arises from measured DNS local subgrid energy transfer. Note
the strong cusp arising from the local subgrid energy transfer as
k—k,. These simulations are at low Reynolds number so that
there is not an extended inertial range (i.e., we are in a situation
similar to the case » =1 in Fig. 1).
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Figs. 6 and 7. It is precisely this interaction between
resolvable-subgrid scales that gives rise to the cubic non-
linearities in the recursive-RNG formulation. Without
the inclusion of these higher-order nonlinearities there
would be no cusp in the renormalized eddy viscosity.

In Figs. 8 and 9, we examine how the transfer spectra
are affected by the various modal interactions as deter-
mined from the LES and DNS Navier-Stokes databases.
The resolvable-resolvable interactions yield an energy-
transfer term T < that conserves total energy within the
resolvable range, but within this resolvable range it
moves energy to higher wave numbers—essentially to the
next octave. The subgrid-subgrid transfer 7> removes
energy throughout the resolvable scales in a manner con-
sistent with the concept of an eddy viscosity. But the
resolvable-subgrid transfer 7~ < primarily removes ener-
gy from the last resolvable octave that had been
transferred there by T < so that there is a local flow of
energy through k.. From Figs. 8 and 9, one can see that
the transfer T~ < is most important near k., and it ac-
counts for most of the energy flow from the resolvable
scales, consistent with the corresponding cusp behavior
of v < as k —k,.

Thus our analysis of subgrid-scale energy transfer and
eddy viscosities from numerical simulation databases of
the flow field for both forced turbulence at high Reynolds
numbers and for free-decaying turbulence at low Rey-
nolds numbers indicates that it is not possible to obtain
local energy flow through the wave-number cutoff k, if
one only considers subgrid-subgrid interactions. This lo-
cal energy flow has been shown to be directly related to
the cross term u “u < in Eq. (7), a term discarded in the
€-RNG approach of Yakhot and Orszag [7].

A direct numerical simulation of the recursive-RNG
momentum equation, Eq. (41), is quite prohibitive—both
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FIG. 8. Measured LES energy transfers corresponding to the
forced eddy viscosities in Fig. 6, together with the resolvable
scale transfer T <“(k). T>>(k) is the nonlocal subgrid transfer
while T'> <(k) is the local subgrid transfer.
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FIG. 9. Measured DNS energy transfers corresponding to
the free-decaying eddy viscosities in Fig. 7, together with the
resolvable scale transfer T <“(k). T (k) is the nonlocal subgrid
transfer while 7> <(k) is the local subgrid transfer.

in computational effort and storage, due to the cubic non-
linearities. Recently, Hossain [43] has attempted to
directly model the effect of these RNG-induced cubic
nonlinearities in a low-resolution (on 323 and on 64°
grids) forced-turbulence simulation. Even the modeling
of these cubic nonlinearities requires substantial compu-
tational effort. However, a full Kolmogorov k ~>/3 ener-
gy spectrum was recovered [43] in these simulations, even
up to k.. If the effects of the cubic interactions were ig-
nored, then the energy spectrum exhibited a flattening or
even a rise near k.. This phenomenon is also clearly seen
in the high-resolution free-decay simulations of Chasnov
[25,26]. This again illustrates the importance of retaining
these cubic nonlinearities and that essential physics is lost
by discarding these interactions.

V. CONCLUSION

In this paper we have reformulated the recursive-RNG
theory [10,11] to make it invariant to the order in which
the subgrid averages are performed—a property that is
to be expected on physical grounds. We find that one still
obtains the same nonlocal eddy damping functions and
triple nonlinearities in the renormalized momentum
equation as before—but we present here a perturbation
formalism which shows that (i) the triple nonlinearity
occurs at the same order as the eddy viscosity, while (ii)
fourth-order nonlinearities are higher order than the tri-
ple nonlinearities—and since we have already neglected
all such higher-order terms, these fourth-order nonlinear-
ities must also be neglected for consistency. Since the
perturbation parameter is eventually set to unity, this
perturbation scheme is purely formal—but it is the basic
approximation made in all RNG theories, both recursion

RNG and € RNG.

The triple nonlinearities in the momentum equation
[10,11] exhibited a relatively weak cusp behavior in the
eddy viscosity as k —k_, the wave number separating the
subgrid from the resolvable scales.

Now in LES [20-22] and DNS [23,24] the role of the
eddy viscosity is usually considered in the context of the
energy transfer with the eddy viscosity exhibiting a
strong cusplike behavior as k—k.. In this paper, we
consider the effects of the triple nonlinearities on the en-
ergy transfer and show that the corresponding drain-eddy
viscosity exhibits a strong cusp as k —k_, in good agree-
ment with the LES [20-22] and DNS [23,24] calculations
and by our own examination of both forced- and free-
decaying turbulence simulation databases (Sec. IV).
Moreover, it is shown analytically that this drain-eddy
viscosity is negative for small k /k,, in agreement with re-
cent numerical simulations [23,25,26]. This negative
drain-eddy viscosity represents a backscatter of energy
from small to large spatial scales.

On the other hand, the e-RNG theories [5-7] ignore
the effects of these higher-order nonlinearities. While
this can be justified for € <<1, the Kolmogorov energy
spectrum is only recovered in the limit €e—4, and in this
limit there is no justification for neglecting these higher-
order nonlinearities. Moreover, the eddy viscosities de-
rived in these theories hold only in the limit kK — 0 and for
the case of forced turbulence only. The recursive-RNG
approach, on the other hand, yields a wave-number-
dependent eddy viscosity which is valid for both free-
decaying and forced turbulence. There are some
subtleties in performing the two limit processes # — 1 and
k —0 in the recursive RNG, but these are of a purely
technical nature and are planned to be reported else-
where.
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APPENDIX A: PERTURBATION EXPANSION
ON THE MULTIPLE SCALE
ELIMINATION PROCEDURE [10,11]

For completeness, it is worthwhile to consider what
happens in the old recursive-RNG formulation [11] when
the subgrid velocity perturbation expansion, Eq. (10), is
performed. We shall outline in this appendix that (i) the
resultant momentum equation is independent of the order
in which the subgrid averaging is performed; (ii) the
fourth-order nonlinearities are at least O (A*®), and are ig-
norable, and (iii) the consistency constraint, Eq. (26), is
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automatically satisfied.

If one first substitutes Eq. (11), the leading-order
subgrid solution u >0 into the resolvable scale momen-
tum equation (7) and then performs the subgrid average,

d
3{+V0k2
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then there is no nontrivial information. The role of u >°
is just to specify the subgrid autocorrelation.

The nontrivial contribution to the resolvable scales
comes from u >!. From Eq. (7)

u Sk D)=F 5 (k) +AM 45, (k) [ dj[u 5 G,0u s (k—3,0+2u 3 (§,0u S (k—j,0)

+2uz ' (j,00u;%(k—j,0]+0(X) . (A1)

One now substitutes Eq. (18) for u > ! into Eq. (A1) and then performs the subgrid average. We note that at O (A?) (i)
the u > 'u < term in Eq. (A1) will generate the triple nonlinearity

2M

(k) [d% d%j'dT Gyl t, WM g (Du 5 (7,05 (G— ', mhu 5 (k—j,7)

(A2)

(ii) the u > 'u > term in Eq. (A1) will generate the nonlocal eddy-damping function n4(k,t,7),

4M 4, (K) [ d%f d*j'dT Golj,t, DM g, (D u 303, 0 2 Ok =, u s (G—jm=— [ draolk,t,ru s (k7).

Note that 1, depends only on the leading-order subgrid
autocorrelation and that Eq. (17) has been used to reduce
Eq. (A3). (iii) The u > 'u > term in Eq. (A1) will also gen-
erate a term of the form {(u” %% >°% >°), which is
dropped as a result of the closure approximation.

After eliminating the first subgrid shell, the resolvable
scale momentum equation is just that given by Egs. (33)
and (34). On removing all the subgrid shells, one finds
that one recovers the same final set of equations as when
the subgrid averages are performed first.

It should be noted that in our earlier multiple scale

9 2
Y + vk

since the substitution of u~% into the corresponding

resolvable scale equation will not generate useful infor-
mation. Thus u ~ can be replaced by u ~¢ in the second
and last terms of Eq. (A4), in the spirit of keeping just the
lowest inhomogeneous effect. One now proceeds analo-
gously to the forced-decay case, noting the statistical in-
dependence of u < and « ~ in the second term of Eq. (A4,

APPENDIX B:
EFFECTS OF THE SPECTRAL GAP

In this appendix, we examine the effects of a spectral
gap in this reformalized RNG and show that, as in the
earlier formalism [10,11], triple nonlinearities are not
generated if there is a spectral gap. It should be noted it
is the existence of a spectral gap that led to the original
concept of eddy viscosity in gas dynamics. The spectral
gap is a commonly used simplifying assumption in calcu-
lating magnetohydrodynamic (MHD) transport
coefficients [44—48] and the modeling of interplanetary

ug (k,t)=?xMa3,,(k)fd3j[uﬁ< (GoDu s (k—j,0)+2uz°(j,0u 5 (k—j,0+2ug (j,0u; P (k—j,0],

(A3)

r

elimination RNG technique [11], we kept the triple non-
linearities u “u “u < but dropped the fourth-order non-
linearities u “u “u “u < without any justification. With
the perturbation expansion Eq. (10) for the subgrid scales,
one can now show that these fourth-order nonlinearities
u~u<u<u< are in fact O(A3), while the triple non-
linearities u “u “u < and eddy viscosity are O(A2).
Hence one is justified in dropping these fourth-order non-
linearities.

For free-decay turbulence, one would proceed with the
resolvable scale velocity in the form

(A4)

MHD fluctuations [49,31,32]. Although in the latter
case, the small- and large-scale structures are well
separated in size [49], numerical results indicate that the
spectral gap will be filled in within a few eddy-turnover
times. The consequences of invoking the spectral gap
have been explored in free-decaying turbulence [10].
Here we consider forced turbulence.

The subgrid-scale equation for the velocity field, in the
presence of a spectral gap, now takes the form

—a—-l-vok2

> — >
= ul (k,0)=f2 (k,t)

+2M o, (k) [ djuj (j,0)
Xu; (k—j,t)
(B1)

where we retain only the relevant terms. The corre-
sponding resolvable scale momentum reduces to
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9
5+v0k2 ug (k,t)

On applying ensemble averaging to Eq. (B2), we obtain

9

Y +v0k2

Using Eq. (31),

—a—+'V0k2 u;

<
k,
Y - (k,7)

k,0)+ [ dragk,t,Tu

=fs D +Mp, (k) [d%uj (j,0u; (k—j,0) .

(B4)

The eddy-damping function will not have any triple non-
linearity effects. This also holds for all further RNG
iterations.

Thus the spectral gap assumption precludes the ex-
istence of the triple nonlinearities and no additional as-
sumptions are needed to achieve closure. However, if
there are no spectral gaps then there is no way to avoid
the triple nonlinearities.

APPENDIX C:
THE RENORMALIZED EDDY VISCOSITY
IN FREE-DECAY AND FORCED TURBULENCE

In this appendix, we briefly summarize how the renor-
malized eddy viscosity is derived in the case of free-decay
[10] and forced turbulence [11] and then clarify the nu-
merical scaling used in these earlier calculations.

1. Free-decay turbulence [10]

After the removal of n subgrid shells it has been shown
[10] that the eddy-viscosity recursion relation is given by

v, (K)=v, (k)+8v, (k) (1)
where
n L,;Q(k—jD
Sv,(k)=2 d3ji— (C2)
Eof v, () k?
with the coefficient L;; defined by
Ly, =—2M 5, (K)M gz (D g, (k=)D (k)  (C3)
and Q(|k—j|) is related to the energy spectrum
E(|k—jl)
. E(k—j)
(k—jh=——"75. (C4)
Q(lk—j arlk—jl?

In free-decaying turbulence, it is assumed that a Kolmo-

gorov energy spectrum is maintained by some means
E(k)=Cie**k " (C5)

where C; is the Kolmogorov constant and € is the energy

=f &k, + M5, (k) [d3j[u (j,0u

u g (k0= f 5 (k0+Mp, (k) [d*jluf (Gous

YE ZHOU AND GEORGE VAHALA 47

S (k—j,)tug (j,t)hu, (k—j,t)] . (B2)

(k—j,0)+Cug (j,0u; (k—j,0))] . (B3)

r

dissipation rate.
The RNG transformation consists in defining

k=k, k=h""lkk , (Ce6)
where 0 <h <1 measures the coarseness of the subgrid
partitioning, Eq. (5), and introducing the renormalized
eddy viscosity v} by

n( n+1k)_cl/2 l/3k 4/3 *(k) (C7)

so that the renormalized recursion relation now takes the
form

v (B)=h*3[v¥(hk)+8v¥(hKk)] , (C8)
with
N |k J|711/3
Bvi(k)=—— zh —4i/3 d3~k’——— (C9)
27k ? f vi_ (R

The recursion relation, Eq. (C8), is now iterated to find
the fixed point v* and this is plotted in Fig. 3 as the RNG
momentum eddy viscosity. Now from Egs. (C7) and (C8),
we see that the normalized eddy viscosity v* is related to
the transport eddy viscosity v by

Y Pp—" L — (C10)
[E (k )/k ]1/2
Thus our RNG fixed point v* as calculated in Ref. [10]
corresponds to the normalized eddy viscosity defined in
typical LES calculations and direct numerical simula-
tions.

2. Forced turbulence [11]

In the case of forcing given by Eq. (13), with y =3, the
eddy-viscosity recursion relation is given by Eq. (C1) but
with

ij|k_.i\73
Ditve(k—jlk—j*

&, (k)=— 2 [a% (C1")

The extra factor of vn(k—j)|k——j]2 arises because of
the presence of this factor in the Green’s function [cf.
Eq. (8)]. We shall now relate the fixed point of the RNG
transformation with the eddy viscosity as defined in LES
and direct numerical simulations. The energy spectrum
can be determined from the velocity covariance

E(k)=2mk?D (k) u,(k,tJug(—k,t)) , (C11)

while the velocity covariance is determined from the forc-
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ing covariance [11]

DODmﬁ(k)Ik(‘3
(ug(k,ug(—k,t))=—-—" |,
“ b 2v(k k>
where v(k) is the RNG fixed point, and D defines the in-
tensity of the forcing. From Egs. (C12) and (C11) we ob-
tain a relationship between the energy spectrum and the
RNG eddy viscosity

(C12)

_ 2mwDok -3

C13
v(k) ( )

E(k

From the RNG scaling transformation, the eddy viscosi-
ty v(k) can be related to the numerical RNG eddy viscos-

ity v*(k) reported in the figures of Ref. [11]:
w(k)=v*(k)(2mDy) 3k ~4/3 . (C14)

The energy spectrum can thus be written

(27TD0 )2/3k —5/3
k\=——7-—"-—. (C15)
v*(k)
On the other hand, in conventional LES and DNS the
normalized eddy viscosity is defined by

v(k)
[E(k)/K]'?
Thus from Egs. (C13) and (C14) we can relate the numeri-
cal RNG eddy viscosity v*(k) reported by us in Ref. [11]
to those numerical values that we would have found if we

had normalized our RNG eddy viscosity as in LES and
DNS.

Vnorm(K)=[v*(k) 72 .

(C16)

Vnorm( k ) =

(C17)

In the figures of this paper, we use the conventional LES
normalization and so must apply the relation (C17) to the
numerical values given in Ref. [11] for the case of forced
turbulence.
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